
Computational Structure for Robotic Computations

w#t m y c a t , m 47907

C.S.G. Let and P.R. Chang
Rvduc University

Abstract / '

c

w p u t a t i o n a l problem of inverse ki maticr and inverse dynamics of robot manipulators by 1
i taking advantage of paralle m and pipeliniig architecture Ip(For the computation of inverse kinematic position solu-

tion, a maximum pipelined CORDIC architecture bas been designed based on a functional decomposition of the closed-
form joint equations. For the inverse dynamics computation, an efficient p-fold parallel algorithm to overcome the /
recurrence problem of the Newton-Euler equations of motion t o achieve the time lower bound of O(/logLn]) h a s also 1
been developed.

1. Introduction
Robot manipulators a re highly nonlinear s y s t e m a n d their motion control is usually specified in terms of the path

traveled by the manipulator hand in Cartesian coordinates. To perform a simple kinematic path control. the controller
is required to compute accurately the joint angles of the manipulator along the desired Cartesian path at an adequate
and acceptable rate. To perform a dynamic path-tracking control, one must repeatedly compute the required gcnerrl-
ized fcrces, from an appropriate manipulator dynamics model, using the measured data of displacements and velocities
of all the joints, and the accelerations computed from some justifiable formulae or approximations, to drive a11 the joint
motors. In order to achieve fast convergence of the control algorithm, a sampling rate of no less than 60 Hz is prefer-
able because the mechanical resonant frequency of most industrial manipulators b around 5-10 hi. The above
kinematic and dynamic path control reveals a basic characteristic and common probkm in robotic manipulator control
- intensive computations with a high level of data dependency. Despite their impressive speed, conventional general-
purpose uniprocessor computers can not efficiently handle the kinematic and dynamic path control computations at the
required computation rate because their architectures limit them to a mostly serial approach t o computation, and there-
fore limit their usefulness for robotic computational problems. T h u paper addresses t h e intensive robotic computa-
tional problems by taking advantage of parallelism and pipeliiing architectures.

Considering that most industrial robots have simple geometry, the kinematic path control requires the computa-
tion of the solution of joint angles which can be obtained by various techniques. The inverse transform technique ill
yields a set of explicit, closed-form, non-iterative joint angle equations which involve multiplications, additions, square
root, and transcendental function operations. Based on an actual implementation on a multiprocessor syskmt [2,3) hav-
ing a circuit to synchronize the CPUs and software scheduling for computing the joint solution, the best reported com-
putation time was 3.6 m.s for a six-link manipulrtor versus 20 ma running on a uniprocessor system. If we use a
CORDIC (COordinate Rotation DIgital Computer) architecture [4], the computation time reduces to 40 9s. a speed-up
factor of 500:t!

For the dynamic path-tracking control, there are a number of ways to compute the generalired forces/torques
applied to the joint motors 151, among which the computation of joint torques from the Newton-Euler (NE) equations of
motion is the most efficient and has been shown to possess the time lower bound of O(n) running in uniprocessor com-
puters where n is the number of degrees of freedom (DOF) of the manipulator. Baxd on the s tudy of Luh, Walker,
and Paul 171, it requires (150n - 4 8) multiplications and (131n - 4 8) additions per trajectory set point for a manipula-
tor with rotary Joints. I t is unlikely tha t further substantial improvements in computational efficiency can be achieved.
since the recursive NE equations a re efficiently computing the minimum information needed to compute the generalized
forces/torques: angular velocity, liner and angular acceleration, and joint forces and torques. For a Stanford robot arm
(a total of 308 multiplications and 254 additions b required to compute the joint torques [SI), this amounts to 25 ma
processing time on a uniprocessor system and 5.69 ma running on an experimentai multiprocessor system with 7 proce t
sors 191. If we use the parallel algorithm with 6 processors as propwed in th is paper, this reduces the computation from
852 multiplicatioas and 738 additions running on a uniprocessor to 197 multiplications and 183 additions for a PUMA

Thin work w u rupporkd ia p u t by the Nationd Science Foundation Engineering R a r u c h Center G r u t CDRIS00022. Any O ~ A B ~ O O S . Sndiogr. u d
concluiionr or recommendationi u p r d in t h u artid. are t h o u of the author u d do not ncrtuarily r e k t the ricwr of the h iding agency.
t The multiproccaor ryitem conrut. or a MCMW CPU and uven 280 CPUa. E d ZW ir accompanied by two OS11 AF'Ur. local memory. and 110
interfrca
tt A s p d - u p factor u d e 6 0 4 ar the ratio d the computational t i w or a t d running om a a n i p r a c u a syitem to the computalianal t ime or the
uaw tuk rmaning on the propoud uchitcrtnr* (Le.. 20 ma/40/1 s = 500).

_ - - Y

'. . 199
- !

robot due to diaerent kinematic structure of PUMA and Stanford robots, dimt comparison on processing t iw b
invalid I [lo].

Thin paper dtcusses the- development af a maximum pipelined CORDIC architecture for the computatio8 d
inverse kinematic position solation to achieve the pipelined time of 40 PI and an eScient p-fold parallel algorithm b
achieve the t i w lower bound of computing the Fit torques. The CORDIC architecture waa duigned based on a I--
tiond decomporition of the clord-form Fit equations. Delay b u k s a x necemary b balance the pipehed CORDx
architecture to achieve muimmm pipelining. "he bmffer assignment probkm b SO IT^ by the inkger linear p r o g r u
m i g technique. The efficient p-fold parallel algorithm can be best described u couut ing of p-paralkl blocks witb
pipelined ekments within each paralkl block to achieve the time bwer bound of O([bgfi]) of computing the j o b 8
torquer based om the Newton-Euler equations of motion. rhere n is the mumber of degreea of freedom of the maniprl-
tor. The alsorithm can be impkmenkd with a group of microprocessors without complex intercommunication amomg
processors and bassing of data. A modified inverse shu& scheme is suggested for connecting the processors toge tkr
with ellickat i n k r c o m r n u n k a t b u

2. 1orcr.e Kinematic Position Computation
The general kinematic problem of a SDOF robot arm concerns the probkm of finding the generalized coordi-

n a b q = [pI .+ , - - * ,q,] ' . together with the vector of their generalized velocities and the vector of their gcnera:izcd
accelerations in the n-dimensional space such that the characteristics of the motion of the free end, the hand, coincidc
with the prtspecified Cartesian trajectory. This inverse problem has earned considerable attention because of its
importance in relating the Cartesian trajectory of the hand to the corresponding joint-variable trajectory of the mani-
pulator. This paper focuses only on the inverse kinematic position solution.

In solving the inverse kinematic position problem, we are always interested in obtaining a closed-form solution (1 -c

an algebraic equation relating the given manipulator hand position and orientation to one of the unknown joint dk
placements), which yields all the possible solutions in a b e d computation time. Fortunately, most industrial robots
have simple geometry and exhibit closed-form joint solution. Utiliiing the inverse transform technique 111, the joint
angle equations of a six-link manipulator with simple geometry reveal the computation of a large set of elementary
operations: real number multiplications, additions, divisions, square roots, trigonometric functions and their inverse.
However, these elementary operations, in general, cannot be efficiently computed in general-purpose uniprocessor corn
puters. In order to obtain a fixed cornputation time for the joint angle solution, time-consuming transcendental Func-
tions (sine, cosine. and arc tangent) are implemented as table look-up at the expense of :he solution accuracy- The
CORDIC algorithms 11 1-14] are the natural candidates for efficiently computing t h e elementary operations. The7
represent an efficient way to compute a variety of functions related to coordinate transformations with iterative pro-
cedures involving only shift-and-add operitions a t each step. Thus, cordic proceuing elements are extremely simple and
quite compact to realize [IS] and the interconnection of CORDIC processors to exploit the great potential of pipelining
and mdtiprocessing provides a cost-eiTective solution for computing the inverse kinematic position solution.

2.1. CORDIC Algorithms and Processors
In conventional uniprocessor computers, computation of elementary functions such as square roots, sine,. cosine,

hyperbolic sine and cosine and their inverse consumes a considerable amount of elTort than multiplication operation.
These elementary functions can be elficiently computed by the cordic algorithms which can be described by a single set
of iterative equations parametrized by a quantity rn (= -1 , O , l) which dekrmines the type of rotations. To establish
connections between CORDIC and rotation-based algorithms, let the angle of rotation 0 be decomposed into a sum of 1
subangles {d,; i = 0, n - l }

.--I

0 = 1.4 (1)
8 4

where the sign u, (*I) is chosen based on the direction of rotation. Similarly, the plane rotation matrix R(G)

or hyperbolic rotation matrix R(9)

1-sinhd coshd 1 .
1 coshe sinhs

R(9) =

can ako be decomposed into a 2roduct of sub-angle rotation matrices
.-I

= nR(d i)
Id

(2.bj

Thus, a single rotation of 0 angle can be replaced by n smaller rotations with di angle each. In the cordic algoritham,
d; b chosen such that

w k r e m' dekrmines the t F of rotations and (4(i) i = 0, a-1) m a .op-dccreUiy integer sequence. &g 4 from
(0, R(4) earn be writtern u

--+I
R(4,)- Pi [1 (51

w k r e pi b a rarig factor and T a b to (1 + m2-Wa))-'. Let Rn(0) amd Rn(d,) be tk wcrnalised fwm of R(8) a d
R(d,), respectively, them from (3), we L i e

where

Usually, t u a machine constant and = 0.6072 (for m = 1) or 1.00 (for m = 0) or 1205 (for m - - 1). when n 2 le
112, 151. The normalired rotation matrix of (6.b) indicates that each small rotatioa cam be realiscd with one simpk
shift-and-add operation. Hence, the computation of a trigonometric function can be accomplihed with n Mt-and-add
operations, which is comparable to comrentional multiplications. Thia makes a CORDlC ALU a very appealing &ern*
t i re to the traditional ALU for implementing the elementary functions. In general, the normalised CORDIC algorithm
can be writkn as follows:

FOR i= 0.1, - - - , n-1, DO

4% = .;N+ =I 4 (7 4

where $ = r, y s = yh m determines the type of rotation, d, is chosen as in (I), and the auxiliary variabk z,p k intrct
duced to accumulate the rotation after each iteration. And the corresponding "unnorrmiired" CORDIC algorithm 'a
described as:

FOR i- 0.1, - - , n-1, DO

?+I = t, + \ 4 (84

where ro = x., and y,, = ye I t can be shorn that z, and z,'will accumulate the angle of the total rotation and h a r e tk
same value after n iterations. However, the end results of (r.,ya) from the iterations of (8.a) and the end rerults d
(r?,9;9 from the iterations of (75) are related according to

% = k c ; Y . = i Y r ('1
Consequently, one may evaluate .;' and y: by using only the shift-and-add operatiodr in (8r), then realire t. and 9. by
other simple methods such as ROIM look-up tables and regular combinatorial logic, e k . Fortunately, it is possible to
find a simple way to uormalire the scale factor k,, using the same shift-and-add h a r d r a n [14, 151. The s u p p l e m e n t q
operations that are used to force the scale factor to converge toward unity cau be either performed after 211 tk
operations of (7.a) are terminated, that t,

#+I = (1 + 7i2-) 4' ; y:+i (1 + 7; zi)3!: (10)

where i; = q', y,j = y:, and 0 5 i 5 n-1, or interleaved with the operations of (7.21, that is,

6' = (1 + 71 2') $; Jr; = (1 + 71 2 4) y:

where 0 5 i 5 n-I. The parameter 7i in (10) or (11) may be -1 or 0 or 1 depending on the value of i and the t y p d
rotations (;.e. m) [14, 151.

Hariland et ai. [I41 real ted the CORDIC algorithm on a CMOS chip and showed that the processing time of th
CORDIC chip is 40 p 8 . They ako suggested n = 13 as the minimum cycle time of a two-byte ('&bit) &ed point oper*
tion. However, in practice, they used n = 24. For a conventional CORDIC module, it nqpires 5 shinand-add modula
to compute one CORDIC iteration and one normalisation iteration in parallel (that is, 3 shifband-add modilea for (7 4
and (7.b), and 2 shift-and-add modules for (11)). The desired output can be obtained in 24 iterations (n = 24). T h s
24 iterations of 5 shift-and-add modules computing in parallel will be enough to realire CORDIC algorithms. This in&
ci tes that the CORDIC processing time is no slower than the time for a serial multiplier computing two %bit operands.

20 1

S u b t u k 1: x l , = r - (p: + p a l b

zo = I.
CORDIC Procmr: CIRC2 =

The computational Row of these 25 tub togetkr with the input data cam be repruemkd by tk Grrckd acyclic data
dependency graph (ADDC) with switching nodes and p a r a k l edges u shown in Faun 2 and the d e t d about tk
decompoaition of the inverse kinematic @tion rolutiolr into CCMa cam be round L PI. k r4-m 2, rad c o m p a t r t h d
node, indicated by A circle, repmcntr a CORDIC computatkxal modak, and each 8wikhi.g d e , indicated by 8 dot,
performs no computationr but just switches data to tuiopr CcMr The opermb or data ma along tbe edga. A
major bottleneck in achiccving maximum throaghpd or &um piperming in r v 2 k the di&rut a&d time d
the input data at the multi-input CCW (e+ nodes T18 and "22 im Figure 2). The computations of mdti-imprt CCUI
can not k initiakd -til dl the Lpat data hare arrived. TLb dikrent 811bd time of bp.t d.t. length- the pipe-
lited t i w . T~M, the ADDG u i d to be d o l u c c d u d fa& to achieve muimmm pipelbhg. SCmd tech- p7b
[lo] hare b e e m suggested to ready tLb data arrival probkm by i#rting appropriate number d b d e m (or delays) in
some of the patha from the input nede J b the multi-imput CCMa b "balance" tk ADDG u d &re maxim- p i p
Lining. This bnder assignment probkm for balancing the ADM; CIB k reduced to a~ integer liwu optimiratiom pmb
Iem. Detrikd formulation of the uptima1 b d e r assignment probkm u an inkger linear optimhtion probkrn can be
found in 141. Afkr solving the bder assignment probkm, realiratk of the balanced ADDC renth in a maxim- pip-
lined CORDIC architecture. For a PUMA robot urn, the architcctue couistr of 2S CORDIC p- and 141 b . k r
stages with 4 tapped-delaphe-brkra (41. The iniW time delay of the pipelbe im equl b 18 stage latency (or
720 p 8) . where the stage latency d a CORDIC processor a assumed to be 10 p a [14]. The pipelined t h e of tk
CORDIC architecture equab to one stage latency or 40 p a . The realisation d the maximam pipcli.cd CORDIC d
tectun t shorn in Figure 3.

20 2

. . .

L

The geaod imnrrdyumk m a Ib u n - W -dpah&aa k s b k d .rEdbr: ri.atr*jht pdbu
u d +cities {q,(t) , i,(t)):+ r i ich danb the state d the ~..lip.btoe at time 1, cq.tkr r~ U. j d m t A
l ion (q,(t)):-, whiib a n d & d at tk et. nohe t k d p m k eqaat-bro d n d o a f a tk p h t (rj(;))& Y
tdkrr

(12)
48) lrt, --.JmJf 4;) kr. ~ b . - d I lip 3;) L---Llf e r(-) b m d .o.)oyu

At p v a e m t , m u b atteatior, Lu beem l a d om tk c - (. M irnr d U. kmrr d p a d w b a d om lb

r(t) = f!&h i(tX W
vector fu.cbom a d mpencript l' &.or+. trurpol. opu8tKm 011 ulnm a d v u b r r .

NertoltEmkr (NE) hula t iom, r u d t b g i. variorr raltiproc-bad c o m t r o l 9 d r w P,21-24h Ilk n e w s h
tare d tk NE e q u t ' b u d roLi# u drio.rly w d l mikd b stadad aim&-intrrtkm-dmam ul

dmta&ar (s m) compubrs that am capabk d pedordq r u y a~dtaneow opentbu. ou appneh b d & p
img e6cirml W t b m m for comp8ti.g the mbor hverae dymmics i m lo bok at tk compmtatkul m t y d tL
problem 8rsl. Im particmlar, we need b tmr what m ~k mlb. d speeding mF tk compalahm d tbe hrmr
dynamics rhik ramming om p p t a a o r r , where 1 5 p 5 n. "hat *b, we 4 l i te to at .bIbh a lb b w r boomd kt
the i ~ v e n t dymamics c o m p u t a t h probkm so that several e l k k t computational c h e m a C ~ B be coopred .ad em-
t ru ted . Them e l k h n t algorithm .chicring the time b r c r b u d c a ~ be designed for tk colllpalatia d the h ~ m
dynamicr The foliowing mobtiou and kmnu will be u r d to derive tk tiW lower bound d tk hmr h a & p m b
km.
Nota tiom-

(1)

(sm) corprbm. 1% h, h m , .d a8 e 6 c k m l paralkl pmcedmq b e mew ~ b g b * b d r U ~ d r.ltipb

L k a r uilbnrlu rq+rs&n m amy well-formed string compord d four arithmetic operatan (+,-,X,/) or, f?
comvenkmce, two operators +(or -), X (or /), left amd right p a r e m t k , and atow, which am c d n b M v m
abks. We denote a linear arithmetic expression E of m distinct atomr by E<m>, ea. B<4> : + b - e / 1.

T, [ti(.), fk), ... , j ,v)) = M b h u m computing time needed to cvaluak [t t b) , jk) , ... , f ,V)]

Lcmma I: Tke time lower bound of T, [E<m>) [25)- The shortest parallel time to evaluate a linear arithmetk

(2)
urLg p p r o c m r s .

expresaiom E<m> using p procesum in bounded bebr by and equal to O([m/pl + [b pl), that b,

T, I E < ~ > I L o(rmipl + lh2 pi)

Tkorcm 1: The ahortat paralkl time to evaluak the j0i.t torqua {rl(t)}:-, in equation (12) n b g p p r o c c r o n
is bounded bebw by O(k, [r /p l+ 4 [log2 pl), where k , and 4 .tc specified constants, that b,

qirl1ra...,r.1 1 OP, W A + U ~ ~ ~ I) (13)
The proof of Theorem 1 can be foumd in 1101. Two ext-me CUCI f&w from Theorem 1:
(a) If p = 1, thea the shortest computing time T, [rl,r3 ..., 1.1 b mot lower than O(a). nu, the NE lomalatiom b tk

(b) If p = I, then the shorteat parallel computing time T, [r,,r* .., r,] m not b r e r than O([k+l) .
Theorem 1 indicaks t h a t an efficient algorithm running om p proccrc=r may not achicve the same time order .I

O(k, [n/p1+b[log2p1). HoIcver, if a paralkl algorithm poocrcr tke time lower bound, then it m.rt be tbe r ~ &
efficient dgO?itbm of craloatiog the inverse dynamic& Theorem 1 a b indicaka that, although formhtbn b very
efficknt for competing the inverse dynamKr. a better roluthn in to find an el6ciCnt paralkl algorithm, r d g on p p m
cesaors, that pamru a time order of O(k, [n /p l+4[bgrp]) . A p d l algorithm rumning on am SlMD machine a d
achieving the time lower boond is dbcumed next.

The recursive NE equations of motion are very elheielrt in evaluating the inverse dynamics rktk they are for-
mulated im the b u c coordinak frame [a] or the link coordinate framea PI. The clear advamtage of d e r a c b g both tk
dynamics and kiiematics t o the link coordinates ia to obviate a great deal of coordinak traaaformatiaa and to a h =
the link inertia tensor to be b e d in each link coordinate frame, which result. in a much f u t e r c o r n p u t a h in a unipro
tenor computer. However, the recursive strectere of thb formulath in in an inhomogemcw linear mudre form, e t
w, = a,u,-, + b,, where a, = 'R,-, (a 3x3 rotation matrix) and 1, - u,t, which r e q u k m0c1 cakuhtiou a d
arrangememtr for parallel processing than the homogeneous linear r e c m v e form. On the other h a d , the NE formmk-
tion in the b u c coordinak. can be rearranged and tranaforwd isto a homogenrou Laear m u m c e form, e+
Y, = uITI + ;I s ~ L , , which b more suitabk for parallel processing on .D SIMD computer, yielding a muh shorter com-
puti8g tlme.

cquatkau of m o t h are formdakd in)he bue coordinates in a homogenccru b u r m a r r e n e e fora,
then a parallel algorithm, called recursive d o o b h g (16,17,2@-27), cam be otilised to compuk the kinematics i~ the for-
ward equatiom and the d p r m i c s (or torques) in the backward equatiou IS]. The homgencoru liwar marrence p m b
Iem of rise (n+1) cam be described u follorr: given z(0) = a(0) + identity and a(;), 1 5 i 5 n, Bad ~(1). 4 2) *(a)
by am algorithm runmini on an SIUD computer of n p l o c m r s , rkere

moat efficient algorithm of evaluating the inverse dynamics runnbg in omiproceasor computers.

1
1

Once the

203

STEP 2. Compak pa* , n,, and r, for i = 1,2,...,a *
I, = oa, ' 4' pp4r ; pi'- *. 'pi' ; = "a. '.i

The evaluation of sm onty t v o h a Wi the third cdmmn d w..

= Ui-l + bi

Pi Pi4 + bi

N; = J; &; + U, X (J; u;)

204

F- tk dnr~(tk e*liord.rduw J~ = i~~ sir,, w b h L.L e t 3 b t U.
cap.t.uor .N #e

m
'Ni 'Ji '6; + X fJi '~ i) ; Nj I R- 'Ni (n)

(PI

(W

4' ni,, + bi (W

(q)rmi4 , i r h i - 0

(#) ml0di i .d to

'Wi = 6% ui = (*)t ui ; 6;; = 'n, Gi .I (%.)' ;i

= I P S . W k .

mmia ~ r p . k

4 - fd, + r,

bi - Ni + (pi'+ 4) x l i + p;x f&
a d

agP 11. tAmp.k

r ig [(r;)rq4 s if xi = 1 (31)

M i u d e h e d k~ aprcrra i. tk bsm coordi.akr, are $Ten u follow % b the d k k i , u; h the
8mgmh d h k i, u; b the u g l k r accekratkm of h k i, pi b tk b e a r ucekration of h k i, & b the h e u
accekratbm d the m ~ k r d mam d link i, Pi b the total force exerted om link i at the center of my Ni ir the total
w a t exerted om hk i at tk center of mu, f,- b the force exerted- link i by h k i-1, q h tk .rowat exerted
om l id i by hk i-1, ri L tho toqae exerted by the actuator at joint i if rohtiond, force if trurltiou), q; b tk
Wt v u k b k d joint i (#i il rotatbaa1 and 4 if tramhtiond).

(22). (28). u d (30) a l y ~ T ~ T O h p k mudre rector addition form. Tk other equatiolu in the NE eqaatiom can be
compmted p u d k w . TL.., the erdutioa of the total compatationd complexity of the parallel algorithm for a PUMA
robot 8 r m e u be *ed ufdbrrt
(a) Tk p d w h t h d (15) uing recrudre dombling indicates (27 fb&a1- 19) scalar mdkipk8tions aad

(b) Equ8t.m (la), (20). (22). (S), and (30) dl have the same recursive rector addition form, the total p u d e l evalaa-

(e) Tk p a d l e T d 8 . h d the other equrtiom~ in the NE fOnn.l.ti00, e*. p,'= x. 'p,-', m i Fi, Ni, r;,
aad d the bi of (17), (lS), (21h and (29) can be uka la t ed by h p k pua lk l computations, a constant
compaktion of 135 rrlu mdtiplicatiau and 9% r& additionr

Combting tk result. of (8). (b), and (c), the total computational com iudty of the parallel dgorithm a p p h d to a
PUMA robot urn is (27 1-1 + 116) r & r mdtipliutionr and (24 9 [log&s+l)] + 84) auhr additiow
Note that it m of time order O([-I) becaase .IC 8read.g p = m pmcmm. If farther reduction o. the c o c a k n b
d (rlorol.1) L d e s h b k , t h i m cam be accomplished by aing matrix multiplier chips. Tbh would r e d r e the coetheirnta
27 a r d 18 im evdaating (15) as dbcuned in (a). If n = 6, then the compkxity d the parllkl NE dgoritkm is I97 multi-
p l i a (mdts) u d 183 additiou (adds) - compared with the compkxity d the NE algorithm d g Q. a u.ipro~rr~r

852 mdt. sad 738 adds. Maceover, e r u if becomes luge, say n = 12 (for rcdudant robots), t k m the number of
mdtiplicatbm aad additiou k r e u a only by 27 and 33, respectively. Thus, we hare &own tha t corddcrabk uvbp
b c o m p 8 t a b t h e cam be achicred from embedding the inverse dynamic c o m p u k h n in a purlkl dgorithm, rhkh
Lu a time c o m p W y of Ioguit&ic in the number of joints, O([b al).

-8- (15) h tk e T 8 1 8 S h d R- b a dmpk mudrt prodact f0- &88&0# (18). (?oh

(18 1-1 - 14) .crk. addit&

t h of tLar e q u a t h rrplirtr (6 [*I+ s [b&+i)l) r.kr additioar

U. An B&kd P ~ r l k l AlforiLhm Wlth p-Fold P u ~
L u t rcttioa h o d that the bottkneck of parallel computation of the inrem dparmcs dependa on rohing the

&d, it i. desirablr to ob& u rthir.t parallel algorithm whkh cu greatly improve the erahatiom of the lkcu
recuremce uiy p p A p u s h 1 algorithm d evaluating tb. mrcrr+ d y n d with a ratrkkd number of p

kl d & t b can be b u t dacribed u coruiting of p-purllcl b b c h with pipelined ckmenta withi each parallel b b c t
Tke renlts h m the computation8 in the p b b c k form a m e w homogemom hear recurrence of she p , d k h agah can
be computed uiag the I#.ldt. doubliy dgwithm. TI. purrlkl d&tb.m with p-fold pua l l ehm (I") b uuamar-
k d u d p-kd u folbrr

&orIthm PFP (p-fold Purlhlkap). l'bk algorithm &idea the -putatbaa into p-pardel b b c b d e 0 m p m t . k
Tk i t h p- e0mp.b k ekmerb im the j t h Mock -A l l y . Tk radb frorn the the p-pu.pcl b b c L form 8
w w komogemeour

Lollrgenoor b a r M- d k N-E h u b t i o l If tk rsltrittia tlut olra miuoproctr#r "huQcr" one jomt k

pmcarorr bas been to Khicrr tk tinv 10- b w d d O(L, Tm/pl+ 4 [h pl). The pro& p-fold pur l -

recureace d &e p , whkb cam be computed by tk musire doabling algorithm.

205

(. o q
' 0 0 0 1

0, = 0, - 0,

(A-9)

0

0

a

3.

4.

5.

8.

7.

8.

9.

10.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

28.
27.

WatUrk, T. et & %provemat d the h p m t b g The d Robor MpdaCOrr; thing 8 Mdtiproceror,"

Lee, CSG. a d -g, PR, "A Maximum F' ipehd CORDIC Aditcetu, k r k- Khamtics h p m k
tiom," Tcckicd Report T R W , School d El+ctricd Eagineuiy, P u d w Uaivenity, Jarnu- 1988.
Fm, K. S, Coudes, R C., and Lee, CS.G., &Wke Codd, si-, Virior, d hte-ur, McGrarr-HIl,
Spteaba, 1-
Orb, DE, RB. McGha, M. Vmkobrrtovk, and G. Harhxh, "Kinematic and Kinetic Andy& d Opawhain
Linkages m W i Nertoo-Epkr Methods," A&& k , V d 43,1419, pp. 107-130.
Lmh, J.YS, UW. Walker, and R9.C. Pad, "O.-he Computational Scheme for Mechanical fimipmhtor,"
T- of AS- J. of Dpun. SpL, Mu. d COrtrL, VoL 102, pp. 69-76, J u e 1980.

tor," Iggg TI.U *& Mu, d C*r, VoL SMG12, No. 2, pp. 214234, Marc!~/AprillOSZ.
K.nkra, H. u d Narik, S, ' T d l P m c a i n g d Robot Arm cootrOl COglpmhtiolP on a MoltiprocaPw SJS-

Lee, Cs.G. and chug, P& '%&ient Pudw mor i thm for h e m e D y n h Computation," Trans. on

Volder, JE, "The CORDIC Trigonometric Computing Technique," l7t.B Truu. Electronic Complttrr, VoL EC-8,
No. 3, Sept. 1959, pp. 33&334.
Wdther, JS, "A UniSed Algorithm for Elementary Functionq" AFPS Con/. Roc., Vol. 38,1971, pp. 379-385.
Ahmed, H. M, J. M. D e h e and M. Morf, "Highly Concurrent Computing Structures for Matrix Arithmetic
and Signal Processing," RB'E Compkr. VoL 15, No. 1, pp. 6S82, Jan. 1982.
Hadand, G. L. and A. A. Tussynski, "A CORDIC Arithmetic Processor Chip," IEEE Tr-. C o w . , Vol. C
29, No. 2, pp. 6878, Feb. 1980.
Deride, P. et d., "ParaUel and Piptlined VtSI Implementation of Signal Proceasing Algorithms," im VLSI and
Mdcm Signal Itoccuirrg, S. Y. Kmg, H. J. Whitehoasc, T. Kaiith, (e&), PienticeHall, Inc, E n g k d CliKs,

Kogge, P.M., 'Tarallel Solution of Rtcurrencc Probknu," IBMJ. Res. Dcorbp., Vol. 18, pp. 138-148, Mar. 1974.
Kogge, PAL and Stone, HS., "A Parallel Algorithm for the ESciicnt Solution of a General Class of Recurrence
J3quatioru." IEEZ Tram. on Comprf., VoL GZ, pp. 789-793, AUg. 1973.
Kung, H.T. and Lam, M., Waler-Scak Xntcgration and T-kd Pipelined Implementation of Systolic Arrays,"
J. of P d l and Dktribuied Computing, VoL 1, No. 1, Sept. 1984, pp. 32-63.
Dennis, J. B. and R G. Gao, "Marimurn Pipelining of Array Operatiom on Static Data Flow Machine," Roc.
o/ 1985 b't, couf. on P4fQuci R o c c m h g , pp. 331-334, Aug. 1983.
Leibcrson, CB. and S u e , J. B, "Optimirmg Synchronous Sysknu," 1. VLSf and Comprtcr *nu, VoL 1,
1983, pp. 41-68.
Lee, CS.G, Mudge, TN, and Turney, JL, "Hierarchical Control Structun wing Special Porpac Processors
for the G n t d of Robot Arms," Ifoe. 1982 Pattern &co@r a d h u g e R o c c u h g Coif., L u Vega,
Nevada, Jane 1447,1982, pp 634-840.

Lathrop, L.H., "Parallelism in Manipulator Dyndca," U T . Artihcial Intelligence Tech. Rep. No. 754, Dtc.
1983.

Niiam, R and C. S. G. Lee, "A Mdtiproctaor-Bucd Controller for the Coatrol of Mechanical Manipahtors,''
B E E J. of Rdot i~~ rad Arbnution, VoL 1, No. 4, Du. 1985, pp. 173-182.
Orb, D.B., "Pipehcd Approach to h e m Pknt Plus J.cobh~ Control of %bot manipelatom," Roc. 1m
IEEB fntl Con/. on Roboficr and Artodwn, Atlanta, G& pp. 169-175, Much 1984.
Horowits, E. and Sahni, S. Fdmcnlolr OJ Computer Alpdbmu, Computer Science Preas Ioc, 1418, pp. 488-
494.
Stone, HS, Introduction b Computer Arrl i i tcchm, Seienee h u c b Aa0Ci.k Inc, 1975, pp. 319-373.
Stone, HS, "Parallel Processing with Perfect Shae," IEEB Tronr. on Comprt., Vol. C20, pp. 153-161, Feb.
1011.

Arc. . / A s 6 wirtcr AIII..l Me*, Man& Raidr, loss, pp. 1 s z T

Lmh, J.Y& u d CS. cia, '%dddbg d P ~ d k l b p 8 h h for 8 b p m k K o r r t d k d U p & -

kq" IEgB 1.0 f Robotic. d Arbnupio~, VOL RA-1, NO. 2, JUIK 1985, pp 104113.

Spirmt, h h , .ad C ~ W & S , VOL Sm-l6,10.4, w, leSa, p ~ - SSt-542-

NJ, pp. 257-276.

208

ai

.)

0
..

209

4 I \

114
M

Figure 3. Redisation of Figure 2 with CORDIC Procnscr~
210

